Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
BMC Cancer ; 24(1): 410, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566115

RESUMO

BACKGROUND: High expression of the glycosyltransferase UGT2B17 represents an independent adverse prognostic marker in chronic lymphocytic leukemia (CLL). It also constitutes a predictive marker for therapeutic response and a drug resistance mechanism. The key determinants driving expression of the UGT2B17 gene in normal and leukemic B-cells remain undefined. The UGT2B17 transcriptome is complex and is comprised of at least 10 alternative transcripts, identified by previous RNA-sequencing of liver and intestine. We hypothesized that the transcriptional program regulating UGT2B17 in B-lymphocytes is distinct from the canonical expression previously characterized in the liver. RESULTS: RNA-sequencing and genomics data revealed a specific genomic landscape at the UGT2B17 locus in normal and leukemic B-cells. RNA-sequencing and quantitative PCR data indicated that the UGT2B17 enzyme is solely encoded by alternative transcripts expressed in CLL patient cells and not by the canonical transcript widely expressed in the liver and intestine. Chromatin accessible regions (ATAC-Seq) in CLL cells mapped with alternative promoters and non-coding exons, which may be derived from endogenous retrotransposon elements. By luciferase reporter assays, we identified key cis-regulatory STAT3, RELA and interferon regulatory factor (IRF) binding sequences driving the expression of UGT2B17 in lymphoblastoid and leukemic B-cells. Electrophoretic mobility shift assays and pharmacological inhibition demonstrated key roles for the CLL prosurvival transcription factors STAT3 and NF-κB in the leukemic expression of UGT2B17. CONCLUSIONS: UGT2B17 expression in B-CLL is driven by key regulators of CLL progression. Our data suggest that a NF-κB/STAT3/IRF/UGT2B17 axis may represent a novel B-cell pathway promoting disease progression and drug resistance.


Assuntos
Leucemia Linfocítica Crônica de Células B , NF-kappa B , Humanos , NF-kappa B/metabolismo , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Prognóstico , Apoptose , RNA , Glucuronosiltransferase/genética , Antígenos de Histocompatibilidade Menor
2.
Clin Transl Med ; 13(12): e1442, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38037464

RESUMO

BACKGROUND: Metabolic dependencies of chronic lymphocytic leukaemia (CLL) cells may represent new personalized treatment approaches in patients harbouring unfavourable features. METHODS: Here, we used untargeted metabolomics and lipidomics analyses to isolate metabolomic features associated with aggressive CLL and poor survival outcomes. We initially focused on profiles associated with overexpression of the adverse metabolic marker glycosyltransferase (UGT2B17) associated with poor survival and drug resistance. RESULTS: Leukaemic B-cell metabolomes indicated a significant perturbation in lipids, predominantly bio-active sphingolipids. Expression of numerous enzyme-encoding genes of sphingolipid biosynthesis pathways was significantly associated with shorter patient survival. Targeted metabolomics further exposed higher circulating levels of glucosylceramides (C16:0 GluCer) in CLL patients relative to healthy donors and an aggressive cancer biology. In multivariate analyses, C16:0 GluCer and sphinganine were independent prognostic markers and were inversely linked to treatment-free survival. These two sphingolipid species function as antagonistic mediators, with sphinganine being pro-apoptotic and GluCer being pro-proliferative, tested in leukemic B-CLL cell models. Blocking GluCer synthesis using ceramide glucosyltransferase inhibitors induced cell death and reduced the proliferative phenotype, which further sensitized a leukaemic B-cell model to the anti-leukaemics fludarabine and ibrutinib in vitro. CONCLUSIONS: Specific sphingolipids may serve as prognostic markers in CLL, and inhibiting enzymatic pathways involved in their biosynthesis has potential as a therapaeutic approach.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Esfingolipídeos/genética , Esfingolipídeos/metabolismo , Esfingolipídeos/uso terapêutico , Metabolômica , Linfócitos B/metabolismo
3.
Cells ; 12(9)2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37174695

RESUMO

In chronic lymphocytic leukemia (CLL), an elevated glycosyltransferase UGT2B17 expression (UGT2B17HI) identifies a subgroup of patients with shorter survival and poor drug response. We uncovered a mechanism, possibly independent of its enzymatic function, characterized by an enhanced expression and signaling of the proximal effectors of the pro-survival B cell receptor (BCR) pathway and elevated Bruton tyrosine kinase (BTK) phosphorylation in B-CLL cells from UGT2B17HI patients. A prominent feature of B-CLL cells is the strong correlation of UGT2B17 expression with the adverse marker ZAP70 encoding a tyrosine kinase that promotes B-CLL cell survival. Their combined high expression levels in the treatment of naïve patients further defined a prognostic group with the highest risk of poor survival. In leukemic cells, UGT2B17 knockout and repression of ZAP70 reduced proliferation, suggesting that the function of UGT2B17 might involve ZAP70. Mechanistically, UGT2B17 interacted with several kinases of the BCR pathway, including ZAP70, SYK, and BTK, revealing a potential therapeutic vulnerability. The dual SYK and JAK/STAT6 inhibitor cerdulatinib most effectively compromised the proliferative advantage conferred by UGT2B17 compared to the selective BTK inhibitor ibrutinib. Findings point to an oncogenic role for UGT2B17 as a novel constituent of BCR signalosome also connected with microenvironmental signaling.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/metabolismo , Proteínas Tirosina Quinases/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais , Fosforilação , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo
4.
Br J Cancer ; 128(2): 285-296, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36347965

RESUMO

BACKGROUND: Naturally occurring germline gene deletions (KO) represent a unique setting to interrogate gene functions. Complete deletions and differential expression of the human glycosyltransferase UGT2B17 and UGT2B28 genes are linked to prostate cancer (PCa) risk and progression, leukaemia, autoimmune and other diseases. METHODS: The systemic metabolic consequences of UGT deficiencies were examined using untargeted and targeted mass spectrometry-based metabolomics profiling of carefully matched, treatment-naive PCa cases. RESULTS: Each UGT KO differentially affected over 5% of the 1545 measured metabolites, with divergent metabolic perturbations influencing the same pathways. Several of the perturbed metabolites are known to promote PCa growth, invasion and metastasis, including steroids, ceramides and kynurenine. In UGT2B17 KO, reduced levels of inactive steroid-glucuronides were compensated by sulfated derivatives that constitute circulating steroid reservoirs. UGT2B28 KO presented remarkably lower levels of oxylipins paralleled by reduced inflammatory mediators, but higher ceramides unveiled as substrates of the enzyme in PCa cells. CONCLUSION: The distinctive and broad metabolic rewiring caused by UGT KO reinforces the need to examine their unique and divergent functions in PCa biology.


Assuntos
Glucuronosiltransferase , Neoplasias da Próstata , Humanos , Masculino , Técnicas de Inativação de Genes , Glucuronídeos , Fenótipo , Neoplasias da Próstata/patologia , Esteroides , Glucuronosiltransferase/genética
6.
Br J Cancer ; 123(2): 240-251, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32418995

RESUMO

BACKGROUND: High UGT2B17 is associated with poor prognosis in untreated chronic lymphocytic leukaemia (CLL) patients and its expression is induced in non-responders to fludarabine-containing regimens. We examined whether UGT2B17, the predominant lymphoid glucuronosyltransferase, affects leukaemic drug response and is involved in the metabolic inactivation of anti-leukaemic agents. METHODS: Functional enzymatic assays and patients' plasma samples were analysed by mass-spectrometry to evaluate drug inactivation by UGT2B17. Cytotoxicity assays and RNA sequencing were used to assess drug response and transcriptome changes associated with high UGT2B17 levels. RESULTS: High UGT2B17 in B-cell models led to reduced sensitivity to fludarabine, ibrutinib and idelalisib. UGT2B17 expression in leukaemic cells involved a non-canonical promoter and was induced by short-term treatment with these anti-leukaemics. Glucuronides of both fludarabine and ibrutinib were detected in CLL patients on respective treatment, however UGT2B17 conjugated fludarabine but not ibrutinib. AMP-activated protein kinase emerges as a pathway associated with high UGT2B17 in fludarabine-treated patients and drug-treated cell models. The expression changes linked to UGT2B17 exposed nuclear factor kappa B as a key regulatory hub. CONCLUSIONS: Data imply that UGT2B17 represents a mechanism altering drug response in CLL through direct inactivation but would also involve additional mechanisms for drugs not inactivated by UGT2B17.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Biomarcadores Farmacológicos/metabolismo , Glucuronosiltransferase/genética , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Antígenos de Histocompatibilidade Menor/genética , Adenina/efeitos adversos , Adenina/análogos & derivados , Adenina/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Linfócitos B/efeitos dos fármacos , Linfócitos B/patologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Leucemia Linfocítica Crônica de Células B/sangue , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , NF-kappa B/genética , Piperidinas/efeitos adversos , Piperidinas/farmacologia , Purinas/efeitos adversos , Purinas/farmacologia , Quinazolinonas/efeitos adversos , Quinazolinonas/farmacologia , Vidarabina/efeitos adversos , Vidarabina/análogos & derivados , Vidarabina/farmacologia
7.
J Histochem Cytochem ; 68(6): 413-435, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32436762

RESUMO

The poly(ADP-ribose) polymerase 1 (PARP-1) enzyme has received much attention in the last decade due to its promising role in cancer therapeutics. Despite the expanding use of PARP inhibitors in cancer therapy, little is known about PARP-1 tissue distribution. Our study provides a detailed survey of PARP-1 tissue and cellular distribution using well-preserved cynomolgus monkey organs and a well-characterized, highly specific monoclonal PARP-1 antibody. Overall, PARP-1 was detected in most organs, but its distribution was restricted to specific cells within each tissue, suggesting that PARP-1 expression is tightly regulated. The strongest expression was in the pituitary, the ovary, the male adrenal gland, and the thymus. One of the key findings of this study was the stronger expression of PARP-1 in proliferating cells rather than mature cells. This observation not only provides clues to the importance of PARP-1 in processes such as DNA replication and transcription in these cell types, but it also provides the basis for further investigation into the effects of its inhibition in the context of malignancy. Overall, this study greatly expands the current knowledge of PARP-1 tissue expression, enabling the identification of tissues where PARP inhibition may be most efficacious.


Assuntos
Poli(ADP-Ribose) Polimerase-1/metabolismo , Sequência de Aminoácidos , Animais , Feminino , Células HeLa , Humanos , Macaca fascicularis , Masculino , Especificidade de Órgãos , Poli(ADP-Ribose) Polimerase-1/química , Transporte Proteico
8.
Br J Cancer ; 122(7): 1068-1076, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32047296

RESUMO

BACKGROUND: Perturbation of the major UGT2B17-dependent androgen catabolism pathway has the potential to affect prostate cancer (PCa) progression. The objective was to evaluate UGT2B17 protein expression in primary tumours in relation to hormone levels, disease characteristics and cancer evolution. METHODS: We conducted an analysis of a high-density prostate tumour tissue microarray consisting of 239 localised PCa cases treated by radical prostatectomy (RP). Cox proportional hazard ratio analysis was used to evaluate biochemical recurrence (BCR), and a linear regression model evaluated variations in circulating hormone levels measured by mass spectrometry. The transcriptome of UGT2B17 in PCa was established by using RNA-sequencing data. RESULTS: UGT2B17 expression in primary tumours was associated with node-positive disease at RP and linked to circulating levels of 3α-diol-17 glucuronide, a major circulating DHT metabolite produced by the UGT2B17 pathway. UGT2B17 was an independent prognostic factor linked to BCR after RP, and its overexpression was associated with development of metastasis. Finally, we demonstrated that distinctive alternative promoters dictate UGT2B17-dependent androgen catabolism in localised and metastatic PCa. CONCLUSIONS: The androgen-inactivating gene UGT2B17 is controlled by overlooked regulatory regions in PCa. UGT2B17 expression in primary tumours influences the steroidome, and is associated with relevant clinical outcomes, such as BCR and metastasis.


Assuntos
Androgênios/metabolismo , Glucuronosiltransferase/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Neoplasias da Próstata/genética , Adulto , Idoso , Progressão da Doença , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias da Próstata/patologia
9.
Br J Cancer ; 122(9): 1277-1287, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32047295

RESUMO

The best-known role of UDP-glucuronosyltransferase enzymes (UGTs) in cancer is the metabolic inactivation of drug therapies. By conjugating glucuronic acid to lipophilic drugs, UGTs impair the biological activity and enhance the water solubility of these agents, driving their elimination. Multiple clinical observations support an expanding role for UGTs as modulators of the drug response and in mediating drug resistance in numerous cancer types. However, accumulating evidence also suggests an influence of the UGT pathway on cancer progression. Dysregulation of the expression and activity of UGTs has been associated with the progression of several cancers, arguing for UGTs as possible mediators of oncogenic pathways and/or disease accelerators in a drug-naive context. The consequences of altered UGT activity on tumour biology are incompletely understood. They might be associated with perturbed levels of bioactive endogenous metabolites such as steroids and bioactive lipids that are inactivated by UGTs or through non-enzymatic mechanisms, thereby eliciting oncogenic signalling cascades. This review highlights the evidence supporting dual roles for the UGT pathway, affecting cancer progression and drug resistance. Pharmacogenomic testing of UGT profiles in patients and the development of therapeutic options that impair UGT actions could provide useful prognostic and predictive biomarkers and enhance the efficacy of anti-cancer drugs.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Glucuronosiltransferase/genética , Neoplasias/tratamento farmacológico , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Humanos , Neoplasias/genética , Neoplasias/patologia , Transdução de Sinais/efeitos dos fármacos , Difosfato de Uridina/metabolismo
10.
Sci Rep ; 9(1): 13008, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31506518

RESUMO

This study investigated the potential of single nucleotide polymorphisms as predictors of survival in two cohorts comprising 417 metastatic colorectal cancer (mCRC) patients treated with the FOLFIRI (folinic acid, 5-fluorouracil and irinotecan) regimen. The rs4806668G > T of the ribosomal protein gene RPL28 was associated with shorter progression-free survival and overall survival by 5 and 9 months (P = 0.002), with hazard ratios of 3.36 (P < 0.001) and 3.07 (P = 0.002), respectively. The rs4806668T allele was associated with an increased RPL28 expression in transverse normal colon tissues (n = 246, P = 0.007). RPL28 expression was higher in colorectal tumors compared to paired normal tissues by up to 124% (P < 0.001) in three independent datasets. Metastatic cases with highest RPL28 tumor expression had a reduced survival in two datasets (n = 88, P = 0.009 and n = 56, P = 0.009). High RPL28 was further associated with changes in immunoglobulin and extracellular matrix pathways. Repression of RPL28 reduced proliferation by 1.4-fold to 5.6-fold (P < 0.05) in colon cancer HCT116 and HT-29 cells. Our findings suggest that the ribosomal RPL28 protein may influence mCRC outcome.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais/genética , Neoplasias Colorretais/mortalidade , Regulação Neoplásica da Expressão Gênica , Células Germinativas/patologia , Polimorfismo de Nucleotídeo Único , Proteínas Ribossômicas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Camptotecina/administração & dosagem , Estudos de Coortes , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Feminino , Fluoruracila/administração & dosagem , Seguimentos , Células Germinativas/metabolismo , Humanos , Irinotecano/administração & dosagem , Leucovorina/administração & dosagem , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas
11.
Front Oncol ; 9: 606, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31334126

RESUMO

High expression of the metabolic enzyme UDP-glucuronosyltransferase UGT2B17 in chronic lymphocytic leukemia (CLL) cells was associated with poor prognosis in two independent studies. However, the underlying mechanism remains unknown. We hypothesized that UGT2B17 impacts intracellular levels of hormone-like signaling molecules involved in the regulation of gene expression in leukemic cells. We initially confirmed in a third cohort of 291 CLL patients that those with high UGT2B17 displayed poor prognosis (hazard ratio of 2.31, P = 0.015). Consistent with the unfavorable prognostic significance of elevated UGT2B17 expression in CLL patients, high UGT2B17 expression was associated with enhanced proliferation of MEC1 and JVM2 malignant B-cell models. Transcriptomic analyses revealed that high UGT2B17 was linked to a significant alteration of genes related to prostaglandin E2 (PGE2) and to its precursor arachidonic acid, both in cell models and a cohort of 448 CLL patients. In functional assays, PGE2 emerged as a negative regulator of apoptosis in CLL patients and proliferation in cells models, whereas its effect was partially abrogated by high UGT2B17 expression in MEC1 and JVM2 cells. Enzymatic assays and mass-spectrometry analyses established that the UGT2B17 enzyme inactivates PGE2 by its conjugation to glucuronic acid (GlcA) leading to the formation of two glucuronide (G) derivatives. High UGT2B17 expression was further associated with a proficient inactivation of PGE2 to PGE2-G in CLL patient cells and cell models. We conclude that UGT2B17-dependent PGE2 glucuronidation impairs anti-oncogenic PGE2 effects in leukemic cells, thereby partially contributing to disease progression in high UGT2B17 CLL patients.

12.
Drug Metab Dispos ; 47(5): 444-452, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30819787

RESUMO

Accurate quantification of the metabolic enzyme uridine diphospho-glucuronosyltransferase (UGT) UGT2B17 has been hampered by the high sequence identity with other UGT2B enzymes (as high as 94%) and by the lack of a specific antibody. Knowing the significance of the UGT2B17 pathway in drug and hormone metabolism and cancer, we developed a specific monoclonal antibody (EL-2B17mAb), initially validated by the lack of detection in liver microsomes of an individual carrying no UGT2B17 gene copy and in supersomes expressing UGT2B enzymes. Immunohistochemical detection in livers revealed strong labeling of bile ducts and variable labeling of hepatocytes. Expression levels assessed by immunoblotting were highly correlated to mass spectrometry-based quantification (r = 0.93), and three major expression patterns (absent, low, or high) were evidenced. Livers with very low expression were carriers of the functional rs59678213 G variant, located in the binding site for the transcription factor forkhead box A1 (FOXA1) of the UGT2B17 promoter. The highest level of expression was observed for individuals carrying at least one rs59678213 A allele. Multiple regression analysis indicated that the number of gene copies explained only 8% of UGT2B17 protein expression, 49% when adding rs59678213, reaching 54% when including sex. The novel EL-2B17mAb antibody allowed specific UGT2B17 quantification and exposed different patterns of hepatic expression. It further suggests that FOXA1 is a key driver of UGT2B17 expression in the liver. The availability of this molecular tool will help characterize the UGT2B17 level in various disease states and establish more precisely the contribution of the UGT2B17 enzyme to drug and hormone metabolism.


Assuntos
Anticorpos Monoclonais/metabolismo , Glucuronosiltransferase/metabolismo , Fígado/metabolismo , Microssomos Hepáticos/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Sítios de Ligação , Regulação da Expressão Gênica/fisiologia , Humanos , Regiões Promotoras Genéticas/fisiologia
13.
Drug Metab Dispos ; 46(5): 514-524, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29438977

RESUMO

The detoxification enzyme UDP-glucuronosyltransferase UGT2B10 is specialized in the N-linked glucuronidation of many drugs and xenobiotics. Preferred substrates possess tertiary aliphatic amines and heterocyclic amines, such as tobacco carcinogens and several antidepressants and antipsychotics. We hypothesized that alternative splicing (AS) constitutes a means to regulate steady-state levels of UGT2B10 and enzyme activity. We established the transcriptome of UGT2B10 in normal and tumoral tissues of multiple individuals. The highest expression was in the liver, where 10 AS transcripts represented 50% of the UGT2B10 transcriptome in 50 normal livers and 44 hepatocellular carcinomas. One abundant class of transcripts involves a novel exonic sequence and leads to two alternative (alt.) variants with novel in-frame C termini of 10 or 65 amino acids. Their hepatic expression was highly variable among individuals, correlated with canonical transcript levels, and was 3.5-fold higher in tumors. Evidence for their translation in liver tissues was acquired by mass spectrometry. In cell models, they colocalized with the enzyme and influenced the conjugation of amitriptyline and levomedetomidine by repressing or activating the enzyme (40%-70%; P < 0.01) in a cell context-specific manner. A high turnover rate for the alt. proteins, regulated by the proteasome, was observed in contrast to the more stable UGT2B10 enzyme. Moreover, a drug-induced remodeling of UGT2B10 splicing was demonstrated in the HepaRG hepatic cell model, which favored alt. variants expression over the canonical transcript. Our findings support a significant contribution of AS in the regulation of UGT2B10 expression in the liver with an impact on enzyme activity.


Assuntos
Processamento Alternativo/genética , Glucuronosiltransferase/genética , Fígado/fisiologia , Processamento Pós-Transcricional do RNA/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Hepatocelular/genética , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Células HEK293 , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Masculino , Pessoa de Meia-Idade , Complexo de Endopeptidases do Proteassoma/genética , Transcriptoma/genética , Adulto Jovem
14.
Front Pharmacol ; 8: 23, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28217095

RESUMO

The conjugative metabolism mediated by UDP-glucuronosyltransferase enzymes (UGTs) significantly influences the bioavailability and biological responses of endogenous molecule substrates and xenobiotics including drugs. UGTs participate in the regulation of cellular homeostasis by limiting stress induced by toxic molecules, and by controlling hormonal signaling networks. Glucuronidation is highly regulated at genomic, transcriptional, post-transcriptional and post-translational levels. However, the UGT protein interaction network, which is likely to influence glucuronidation, has received little attention. We investigated the endogenous protein interactome of human UGT1A enzymes in main drug metabolizing non-malignant tissues where UGT expression is most prevalent, using an unbiased proteomics approach. Mass spectrometry analysis of affinity-purified UGT1A enzymes and associated protein complexes in liver, kidney and intestine tissues revealed an intricate interactome linking UGT1A enzymes to multiple metabolic pathways. Several proteins of pharmacological importance such as transferases (including UGT2 enzymes), transporters and dehydrogenases were identified, upholding a potential coordinated cellular response to small lipophilic molecules and drugs. Furthermore, a significant cluster of functionally related enzymes involved in fatty acid ß-oxidation, as well as in the glycolysis and glycogenolysis pathways were enriched in UGT1A enzymes complexes. Several partnerships were confirmed by co-immunoprecipitations and co-localization by confocal microscopy. An enhanced accumulation of lipid droplets in a kidney cell model overexpressing the UGT1A9 enzyme supported the presence of a functional interplay. Our work provides unprecedented evidence for a functional interaction between glucuronidation and bioenergetic metabolism.

15.
Mol Pharmacol ; 91(3): 167-177, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28049773

RESUMO

Alternative splicing at the human glucuronosyltransferase 1 gene locus (UGT1) produces alternate isoforms UGT1A_i2s that control glucuronidation activity through protein-protein interactions. Here, we hypothesized that UGT1A_i2s function as a complex protein network connecting other metabolic pathways with an influence on cancer cell metabolism. This is based on a pathway enrichment analysis of proteomic data that identified several high-confidence candidate interaction proteins of UGT1A_i2 proteins in human tissues-namely, the rate-limiting enzyme of glycolysis pyruvate kinase (PKM), which plays a critical role in cancer cell metabolism and tumor growth. The partnership of UGT1A_i2 and PKM2 was confirmed by coimmunoprecipitation in the HT115 colon cancer cells and was supported by a partial colocalization of these two proteins. In support of a functional role for this partnership, depletion of UGT1A_i2 proteins in HT115 cells enforced the Warburg effect, with a higher glycolytic rate at the expense of mitochondrial respiration, and led to lactate accumulation. Untargeted metabolomics further revealed a significantly altered cellular content of 58 metabolites, including many intermediates derived from the glycolysis and tricarboxylic acid cycle pathways. These metabolic changes were associated with a greater migration potential. The potential relevance of our observations is supported by the down-regulation of UGT1A_i2 mRNA in colon tumors compared with normal tissues. Alternate UGT1A variants may thus be part of the expanding compendium of metabolic pathways involved in cancer biology directly contributing to the oncogenic phenotype of colon cancer cells. Findings uncover new aspects of UGT functions diverging from their transferase activity.


Assuntos
Processamento Alternativo/genética , Neoplasias do Colo/enzimologia , Neoplasias do Colo/metabolismo , Glucuronosiltransferase/genética , Proteínas de Transporte/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Respiração Celular , Sobrevivência Celular , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Metabolismo Energético , Regulação Neoplásica da Expressão Gênica , Glucuronosiltransferase/metabolismo , Glicólise , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Ácido Láctico/metabolismo , Proteínas de Membrana/metabolismo , Metabolômica , Mitocôndrias/metabolismo , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Hormônios Tireóideos/metabolismo , Proteínas de Ligação a Hormônio da Tireoide
16.
Cell Rep ; 17(1): 114-124, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27681425

RESUMO

Maintenance of cellular homeostasis and xenobiotic detoxification is mediated by 19 human UDP-glucuronosyltransferase enzymes (UGTs) encoded by ten genes that comprise the glucuronidation pathway. Deep RNA sequencing of major metabolic organs exposes a substantial expansion of the UGT transcriptome by alternative splicing, with variants representing 20% to 60% of canonical transcript expression. Nearly a fifth of expressed variants comprise in-frame sequences that may create distinct structural and functional features. Follow-up cell-based assays reveal biological functions for these alternative UGT proteins. Some isoforms were found to inhibit or induce inactivation of drugs and steroids in addition to perturbing global cell metabolism (energy, amino acids, nucleotides), cell adhesion, and proliferation. This work highlights the biological relevance of alternative UGT expression, which we propose increases protein diversity through the evolution of metabolic regulators from specific enzymes.


Assuntos
Processamento Alternativo , Expressão Gênica , Glucuronosiltransferase/genética , RNA Mensageiro/genética , Transcriptoma , Aminoácidos/biossíntese , Bioensaio , Adesão Celular , Proliferação de Células , Glucuronosiltransferase/metabolismo , Células HEK293 , Células Hep G2 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Inativação Metabólica/genética , Intestinos/enzimologia , Isoenzimas/genética , Isoenzimas/metabolismo , Rim/enzimologia , Fígado/enzimologia , Nucleotídeos/biossíntese , Especificidade de Órgãos , RNA Mensageiro/metabolismo
17.
J Biol Chem ; 291(4): 1789-1802, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26559976

RESUMO

Chromatin undergoes a rapid ATP-dependent, ATM and H2AX-independent decondensation when DNA damage is introduced by laser microirradiation. Although the detailed mechanism of this decondensation remains to be determined, the kinetics of decondensation are similar to the kinetics of poly(ADP-ribosyl)ation. We used laser microirradiation to introduce DNA strand breaks into living cells expressing a photoactivatable GFP-tagged histone H2B. We find that poly(ADP-ribosyl)ation mediated primarily by poly(ADP-ribose) polymerase 1 (PARP1) is responsible for the rapid decondensation of chromatin at sites of DNA damage. This decondensation of chromatin correlates temporally with the displacement of histones, which is sensitive to PARP inhibition and is transient in nature. Contrary to the predictions of the histone shuttle hypothesis, we did not find that histone H1 accumulated on poly(ADP-ribose) (PAR) in vivo. Rather, histone H1, and to a lessor extent, histones H2A and H2B were rapidly depleted from the sites of PAR accumulation. However, histone H1 returns to chromatin and the chromatin recondenses. Thus, the PARP-dependent relaxation of chromatin closely correlates with histone displacement.


Assuntos
Montagem e Desmontagem da Cromatina/efeitos da radiação , Cromatina/metabolismo , Cromatina/efeitos da radiação , Histonas/metabolismo , Animais , Linhagem Celular , Dano ao DNA/efeitos da radiação , Reparo do DNA , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Humanos , Lasers , Camundongos , Poli Adenosina Difosfato Ribose/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo
18.
Drug Metab Dispos ; 43(4): 611-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25650382

RESUMO

Renal metabolism by UDP-glucuronosyltransferase (UGT) enzymes is central to the clearance of many drugs. However, significant discrepancies about the relative abundance and activity of individual UGT enzymes in the normal kidney prevail among reports, whereas glucuronidation in tumoral kidney has not been examined. In this study, we performed an extensive profiling of glucuronidation metabolism in normal (n = 12) and tumor (n = 14) kidneys using targeted mass spectrometry quantification of human UGTs. We then correlated UGT protein concentrations with mRNA levels assessed by quantitative polymerase chain reaction and with conjugation activity for the major renal UGTs. Beyond the wide interindividual variability in expression levels observed among kidney samples, UGT1A9, UGT2B7, and UGT1A6 are the most abundant renal UGTs in both normal and tumoral tissues based on protein quantification. In normal kidney tissues, only UGT1A9 protein levels correlated with mRNA levels, whereas UGT1A6, UGT1A9, and UGT2B7 quantification correlated significantly with their mRNA levels in tumor kidneys. Data support that posttranscriptional regulation of UGT2B7 and UGT1A6 expression is modulating glucuronidation in the kidney. Importantly, our study reveals a significant decreased glucuronidation capacity of neoplastic kidneys versus normal kidneys that is paralleled by drastically reduced UGT1A9 and UGT2B7 mRNA and protein expression. UGT2B7 activity is the most repressed in tumors relative to normal tissues, with a 96-fold decrease in zidovudine metabolism, whereas propofol and sorafenib glucuronidation is decreased by 7.6- and 5.2-fold, respectively. Findings demonstrate that renal drug metabolism is predominantly mediated by UGT1A9 and UGT2B7 and is greatly reduced in kidney tumors.


Assuntos
Carcinoma de Células Renais/enzimologia , Glucuronídeos/metabolismo , Glucuronosiltransferase/metabolismo , Neoplasias Renais/enzimologia , Rim/enzimologia , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Glucuronosiltransferase/genética , Humanos , Rim/metabolismo , Rim/patologia , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Preparações Farmacêuticas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , UDP-Glucuronosiltransferase 1A
19.
J Exp Clin Cancer Res ; 33: 19, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24528514

RESUMO

BACKGROUND: Considering previous result in Non-Small Cell Lung Cancer (NSCLC), we investigated in human cancer cells the role of PARP3 in the regulation of telomerase activity. METHODS: We selected A549 (lung adenocarcinoma cell line) and Saos-2 (osteosarcoma cell line), with high and low telomerase activity levels, respectively. The first one was transfected using a plasmid construction containing a PARP3 sequence, whereas the Saos-2 cells were submitted to shRNA transfection to get PARP3 depletion. PARP3 expression on both cell systems was evaluated by real-time quantitative PCR and PARP3 protein levels, by Western-blot. Telomerase activity was determined by TRAP assay. RESULTS: In A549 cells, after PARP3 transient transfection, data obtained indicated that twenty-four hours after transfection, up to 100-fold increased gene expression levels were found in the transfected cells with pcDNA/GW-53/PARP3 in comparison to transfected cells with the empty vector. Moreover, 48 hours post-transfection, telomerase activity decreased around 33%, and around 27%, 96 hours post-transfection. Telomerase activity average ratio was 0.67 ± 0.05, and 0.73 ± 0.06, respectively, with significant differences. In Saos-2 cells, after shRNA-mediated PARP3 silencing, a 2.3-fold increase in telomerase activity was detected in relation to the control. CONCLUSION: Our data indicated that, at least in some cancer cells, repression of PARP3 could be responsible for an increased telomerase activity, this fact contributing to telomere maintenance and, therefore, avoiding genome instability.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Regulação Enzimológica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Poli(ADP-Ribose) Polimerases/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Telomerase/metabolismo
20.
Mol Aspects Med ; 34(6): 1066-87, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23268355

RESUMO

Poly(ADP-ribosyl)ation is a posttranslational modification catalyzed by the poly(ADP-ribose) polymerases (PARPs). These enzymes covalently modify glutamic, aspartic and lysine amino acid side chains of acceptor proteins by the sequential addition of ADP-ribose (ADPr) units. The poly(ADP-ribose) (pADPr) polymers formed alter the physico-chemical characteristics of the substrate with functional consequences on its biological activities. Recently, non-covalent binding to pADPr has emerged as a key mechanism to modulate and coordinate several intracellular pathways including the DNA damage response, protein stability and cell death. In this review, we describe the basis of non-covalent binding to pADPr that has led to the emerging concept of pADPr-responsive signaling pathways. This review emphasizes the structural elements and the modular strategies developed by pADPr-binding proteins to exert a fine-tuned control of a variety of pathways. Poly(ADP-ribosyl)ation reactions are highly regulated processes, both spatially and temporally, for which at least four specialized pADPr-binding modules accommodate different pADPr structures and reprogram protein functions. In this review, we highlight the role of well-characterized and newly discovered pADPr-binding modules in a diverse set of physiological functions.


Assuntos
Poli Adenosina Difosfato Ribose/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas/metabolismo , Animais , Sítios de Ligação , Dano ao DNA , Humanos , Poli Adenosina Difosfato Ribose/química , Poli(ADP-Ribose) Polimerases/química , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional , Proteínas/química , Transdução de Sinais , Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA